

Exceptional service in the national interest

Project 6: Acoustoelasticity Measurements and Modifications

Students: Deborah Fowler (UMass Lowell), Garrett Lopp (U. of Central Florida),

and Dhiraj Bansal (CU Boulder)

Mentors: Ryan Schultz (SNL), Matt Brake (Rice), and Micah Shepherd (Penn St.)

Acoustoelasticity studies the coupling between structural and acoustic modes

- Acoustoelasticity is a subset of the field of structural acoustics
- Structures and acoustics are coupled through the velocity that is equal at the interface surface
- Structures and fluids propagate sound waves that form standing waves with specific patterns (mode shapes) at specific frequencies (resonance)

Acoustic mode shape

Acoustoelastic Coupling!

Acoustoelastic coupling generates unexpected peaks in the frequency response

Structural Frequency Response Function (FRF)

Presence of coupling causes difficulty in validating analytical models (e.g., finite element)

- One of the main goals of modal testing is to supply experimental data for analytical model correlation
- Finite element models typically assume zero interaction with the surrounding air (in-vacuo, structure-only state)
- Running coupled analyses increase model complexity and computational expense

How can we approach this problem from the experimental side?

We seek to develop methods to...

- Quickly identify when acoustoelastic coupling occurs
- Measure this structural-acoustic interaction

- Decouple the structural response by altering boundary conditions of:
 - Acoustic volume
 - Structure

Presentation Outline

- Acoustoelasticity Theory
- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

Presentation Outline

Acoustoelasticity Theory

- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

Coupling occurs when mode shapes are similar and frequencies are close in proximity

Modal Equations of Motion:

Structural:

$$M_{m}\ddot{q}_{m} + C_{m}\dot{q}_{m} + K_{m}q_{m} = \rho_{0}c_{0}^{2}A_{F}\sum_{n}\frac{P_{n}L_{nm}}{M_{n}^{A}} + Q_{m}^{E}$$

Acoustic:

$$\ddot{P}_n + (\omega_n^A)^2 P_n = \frac{A_F}{V} \sum_m L_{nm} \ddot{q}_m$$

Acoustoelastic coupling terms

Coupling coefficient measures the degree of similarity between mode shapes

$$L_{nm} = \frac{1}{A_F} \int_{A_F} \psi_n \phi_m dA$$

 ψ_n : Acoustic shape

 ϕ_m : Structural shape

For excitation at the structural resonance frequency, the acoustic modal amplitude is:

$$\overline{P}_{n} = \frac{A_{F}}{V} \frac{(\omega_{m}^{s})^{2} L_{nm}}{(\omega_{n}^{A})^{2} - (\omega_{m}^{S})^{2}} \overline{q}_{m}$$
Minimized when
$$(\omega_{n}^{A})^{2} - (\omega_{m}^{S})^{2} \text{ large}$$

$$(\omega_{n}^{A})^{2} - (\omega_{m}^{S})^{2} \text{ large}$$

[1] Dowell E.H. et al. (1977) "Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparison with Experiment," Journal of Sound and Vibration, **52**(4), 519-542.

A system with acoustoelastic coupling behaves similar to a tuned mass damper

Tuned mass damper

Parameters:

M₁: structural mass

*M*₂: air mass

k₁: structural stiffness

k₂: air stiffness

c₁: structural damping

c₂: air damping

Frequencies

$$f_{1,2} = \frac{1}{2^{3/2}\pi} \left(\frac{k_1 + k_2}{M_1} + \frac{k_2}{M_2} \mp \left[\left(\frac{k_1 + k_2}{M_1} + \frac{k_2}{M_2} \right)^2 - 4 \frac{k_1 k_2}{M_1 M_2} \right]^{1/2} \right)^{1/2}$$

Mode Shapes

$$\begin{cases} X_1 \\ X_2 \end{cases}^{(i)} = \begin{cases} 1 + \frac{1}{k_1} - \frac{M_1}{k_2} (2\pi f_i) \end{cases}$$

Frequency response of M_1

[2] Schultz R., Pacini B. (2017) "Mitigation of Structural-Acoustic Mode Coupling in a Modal Test of a Hollow Structure," Conference Proceedings of the Society for Experimental Mechanics Series,

Adjusting air properties can decouple the structural system

Increasing air stiffness causes the coupled acoustic frequency to shift away from structural frequency

Vary air damping c_2

Increasing air damping causes the structural response to first decrease, then increase towards SDOF response

10

[2] Schultz R., Pacini B. (2017) "Mitigation of Structural-Acoustic Mode Coupling in a Modal Test of a Hollow Structure," Conference Proceedings of the Society for Experimental Mechanics Series,

Presentation Outline

- Acoustoelasticity Theory
- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

A hollow aluminum cylinder provided a test article that exhibits acoustoelastic coupling

Cylinder dimensions:

Length L: 24 in. Inner diameter, $D_i = 7$ in. Outer diameter, $D_o = 8$ in. Wall thickness, $t = \frac{1}{2}$ in.

Measurements:

Accelerometers bonded to surface measure the structural response

Microphones located on rod measure the acoustic pressure

Cylinder suspended from soft bungee cords

Accelerometers located to adequately capture the structural modes of interest

= Uniaxial Accelerometer

Roving microphone array used to adequately capture acoustic modes of interest

Presentation Outline

- Acoustoelasticity Theory
- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

Baseline tests from different days / times altered the system frequency response

Frequency shifts of up to 0.5%

Identified causes include:

- Bungee cord tension / location
- Cylinder end cap removal / reattachment
- Variations in air properties

Zoomed FRF

Acoustic response magnified in frequency ranges where coupling exists

Freq. [Hz]

Location of microphones shows appreciable effect on the coupled frequency

Requires acoustic modal parameters to be extracted at each microphone location!

The two peaks of the coupled structural-acoustic pairs have opposite phasing

Presentation Outline

- Acoustoelasticity Theory
- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

Mitigation strategies analyzed using the coupled modes in the 1700-2000 Hz frequency range

Introducing foam into cavity adds a source of acoustic damping

Using the foam rod (non-contact), increasing the foam volume decouples the structural response

Increasing acoustic damping

Increasing foam causes structural peak to first decrease, then increase and shift in frequency; similar to a tuned mass damper Coupled acoustic response damped out with around 25% of cavity filled with foam

Tuned mass damper

Foam cubes in contact with cylinder increased decoupling potential for same volume of foam

Foam in cavity

- Foam cubes inserted incrementally through hole in endcap
- Foam cubes are less compressed, leading to more effective acoustic absorption

Including partitions in the cavity alters the acoustic mode shape

Locating cardboard disk partition at max acoustic pressure reduces coupling

- Single cardboard disk did not adequately remove coupling
- Requires knowledge of mode shape to effectively place partition to reduce coupling

Including the axial cardboard partition further disrupted the coupling behavior

Unexpectedly induced a frequency splitting in structural peak

Randomly oriented paper towels are most effective and convenient for decoupling

- Paper towels successfully absorb acoustic energy without adding much mass to the system
- Cheap and readily available solution to both quickly identify and remove coupling

Adding mass at anti-nodes shifts structural peaks but has minimal effect on coupled peak

Masses bonded at anti-nodes

- Structural modifications may be necessary if cavity is inaccessible
- The frequency shift caused a second acoustic mode to couple with the structure, though at a small magnitude

Using hose clamps to add stiffness does not have the desired effect

Clamp configuration comparison

- Structural peak shifted down in frequency, indicating that more mass than stiffness was added to the system
- No effect on decoupling the structure

Presentation Outline

- Acoustoelasticity Theory
- Hardware and Test Setup
- Coupling Identification and Measurement
- Mitigation Strategies
- Conclusions

Summary: Successfully measured acoustoelastic coupling and decoupled the structural response

- The air inside the cylindrical cavity caused coupling in multiple structural and acoustic modes
- Coupling identified and measured using typical structural impact excitation
- When the cavity is accessible, paper towels offer an effective and cheap method of quickly identifying and mitigating coupling
- If the cavity is inaccessible, structural modifications have so far been unsuccessful in removing coupling

Acknowledgments

 This research was conducted at the 2017 Nonlinear Mechanics and Dynamics Research Institute supported by Sandia National Laboratories.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Backup Slides

Bungee lengths and connection locations alter amplitudes and shift frequencies

FRF variations due to bungee variations 102 104 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 Freq. [Hz]

Zoomed FRF

Cylinder end cap removal / reattachment shifts coupled acoustic frequencies

Zoomed FRF

Small temperature changes can shift acoustic mode frequencies significantly

In a similar manner, static pressure fluctuations can also induce frequency shifts